1. Consider the triangle with vertices at (1,0), (—1,0), and (0, 1):
s
(031)

3 X
(—1,0) (1,0)

a) (2 points) Find the area of the triangle.
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b) (4 points) Suppose the density (mass per unit area) is p(z,y) = 2%. Find the mass of
the triangle.
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¢) (4 points) Suppose the density is p(x,y) = y2. Find the mass of the triangle.
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2. The line (x,y,z) = (1 —2t,2t — 1,t), with ¢t as the parameter, is denoted by L. The point @
is (1,2, 3).

a) (5 points) Find a point P on L such that the line from P to @ is orthogonal (perpen-
dicular) to L.
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b) (5 points) Find a point R on L such that the line from R to () makes an angle equal
to 45° or w/4 with L.
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3. Consider the solid sphere 22 + y2 4+ 22 < 1. % The anowers ow the ardiive are Thcorvect

a) (3 points) Find the volume of the sphere above the plane z = %
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b) (3 points) Find the volume inside the sphere and above the cone 22 = 2% + 3%, z > 0.
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¢) (4 points) The plane 7 ty+ 5 =1cuts the solid sphere into two pieces. Find the
volumes of both the pieces.
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4. Consider the surface 222 = 24 + 92,

a) (2 points) Find the gradient of f(z,y,2) = z* + y*> — 22% at (z,y,2) = (1,1, 1).
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b) (2 points) Find the tangent plane to the surface at the point (1,1,1).
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5. The density (mass per unit area) is p(x,y) = 1 throughout this problem.

a) (1 point) Consider the semi-circular plate 22 + y* < a? with y > 0. Find the mass of
this plate.
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b) (4 points) Find the y—coordinate of the center of mass of the plate of part (a).
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c¢) (5 points) Now consider the following half-annular plate (center origin, inner radius %,
outer radius 1):
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Find the y-coordinate of the center of mass of this plate.
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6. Consider the vector field F = (322 + 3y)i + (3x + 3y?)j.
a) (5 points) Find a potential function f(x,y) such that F = V f.
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where the curve C is given by r(t) = t*costi+t*sintj, 0 <t < 7.
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b) (5 points) Evaluate the line integral




7. Each part of this problem asks you to evaluate a line integral over a closed curve. The curve
is always assumed to be counterclockwise.

a) (3 points) Evaluate [, azdr + Zsdy with C being 22 + 9% = 1.
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b) (3 points) Evaluate [, wzdr + Zizdy with C being @ +(y—2)?%=1.
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8. The flux of the vector field F out of the surface S is given by [ [(F-ndS, where n is the
outward normal. In each part below, r = i+ yj + zk is the position vector.

a) (2 points) Find the flux of F = ;%5 out of the surface 2 +yt 422 =1.
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b) (2 points) Find the flux of F = .15 out of the surface 2% +y* + 2% = 1.
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9. Let F = yzi+ 222 j+ 3zy k be the vector field for this problem. The surface S is 2%+ y* = 1
with —1 < z < 1. The surface is a cylinder. The surface is obviously open at the top or the
bottom. As always, the position vector is r = zi+yj+ z k.

a) (3 points) The bottom boundary of the surface denoted by C| is given by 2% + y? = 1

and z = —1. The orientation is counterclockwise in the x-y plane. Find the circulation
Jo, F - dr.
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b) (2 points) The top boundary of the surface denoted by Cy is given by z? + 3% = 1

and z = 1. The orientation is counterclockwise in the z-y plane. Find the circulation
Jo, F - dr.
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¢) (b points) Suppose the unit normal n to the cylindrical surface S points outward away
from the axis of the cylinder. Calculate the flux [ [, curl F - ndS.
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